Stochastic modelling of nucleocytoplasmic oscillations of the transcription factor Msn2 in yeast.
نویسندگان
چکیده
Stress induces oscillatory nucleocytoplasmic shuttling of the transcription factor Msn2 in yeast. The subcellular localization of Msn2 is controlled by the cAMP-dependent protein kinase, PKA. Recent experimental observations corroborated by a deterministic computational model for the cAMP-PKA pathway in yeast suggest that the oscillatory dynamics of Msn2 results from the periodic activation of PKA associated with stress-induced oscillations in the level of cAMP. The model accounts for the occurrence of oscillations of Msn2 in a window bounded by two critical values of the stress intensity. In contrast to the rather irregular oscillatory behaviour observed within single yeast cells by means of fluorescence measurements, the deterministic model can only produce a regular pattern of oscillations. To investigate whether the experimentally observed variability could be explained by molecular noise due to the small number of molecules involved in the oscillatory mechanism, we examine a stochastic version of the model for periodic nucleocytoplasmic shuttling of Msn2 coupled to oscillations in the cAMP-PKA pathway. The results of stochastic simulations compare well to the irregular oscillations observed experimentally in the nucleocytoplasmic shuttling of Msn2 in individual yeast cells. The stochastic model retains the property of oscillations within a range bounded by two critical values of stress intensity. We determine the dynamic behaviour as a function of this control parameter and show that the effect of noise markedly depends on the distance from the bifurcation points in the domain of oscillatory behaviour. Finally, we assess the role played by thresholds due to zero-order ultrasensitivity in phosphorylation-dephosphorylation cycles, both in the cAMP-PKA pathway and in the reactions controlling nucleocytoplasmic shuttling of Msn2. In regard to these thresholds, stochastic simulations show that large-amplitude variations of Msn2 associated with large-amplitude oscillations in cAMP can occur outside the domain of sustained oscillations predicted by the deterministic approach.
منابع مشابه
Nucleocytoplasmic Oscillations of the Yeast Transcription Factor Msn2: Evidence for Periodic PKA Activation
At intermediate intensities, stress induces oscillations in the nucleocytoplasmic shuttling of the transcription factor Msn2 in budding yeast. Activation by stress results in a reversible translocation of Msn2 from the cytoplasm to the nucleus. This translocation is negatively controlled by the cAMP-PKA pathway through Msn2 phosphorylation. Here we show that the nuclear localization signal (NLS...
متن کاملThe role of feedback control mechanisms on the establishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae
: In the yeast Saccharomyces cerevisiae, the Ras/cAMP/PKA pathway is involved in the regulation of cell growth and proliferation in response to nutritional sensing and stress conditions. The pathway is tightly regulated by multiple feedback loops, exerted by the protein kinase A (PKA) on a few pivotal components of the pathway. In this article, we investigate the dynamics of the second messenge...
متن کاملOscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae
Msn2 and Msn4 are two related transcriptional activators that mediate a general response to stress in yeast Saccharomyces cerevisiae by eliciting the expression of specific sets of genes. In response to stress or nutritional limitation, Msn2 and Msn4 migrate from the cytoplasm to the nucleus. Using GFP-tagged constructs and high-resolution time-lapse video microscopy on single cells, we show th...
متن کاملCoupled feedback loops control the stimulus-dependent dynamics of the yeast transcription factor Msn2.
Information about environmental stimuli often can be encoded by the dynamics of signaling molecules or transcription factors. In the yeast Saccharomyces cerevisiae, different types of stresses induce distinct nuclear translocation dynamics of the general stress-responsive transcription factor Msn2, but the underlying mechanisms remain unclear. Using deterministic and stochastic modeling, we rep...
متن کاملPromoter decoding of transcription factor dynamics involves a trade-off between noise and control of gene expression
Numerous transcription factors (TFs) encode information about upstream signals in the dynamics of their activation, but how downstream genes decode these dynamics remains poorly understood. Using microfluidics to control the nucleocytoplasmic translocation dynamics of the budding yeast TF Msn2, we elucidate the principles that govern how different promoters convert dynamical Msn2 input into gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 5 Suppl 1 شماره
صفحات -
تاریخ انتشار 2008